
PHYSICAL REVIEW E MARCH 1999VOLUME 59, NUMBER 3
Influence of control loop latency on time-delayed feedback control
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As realized recently, the success of delayed feedback control methods may be significantly restricted by
control loop latency, i.e., by an additional delay which acts on the control force. We show within a linear
stability analysis that such a limitation is caused by the shift of frequency splitting points. Our analytical results
are in good quantitative agreement with numerical ‘‘exact’’ calculations of the Toda oscillator and with data
from an electronic circuit experiment.@S1063-651X~99!00203-2#

PACS number~s!: 05.45.Gg, 02.30.Ks, 07.50.Ek
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The topic of control has become popular among physic
in the past few years, in particular, in connection with t
stabilization of periodic orbits that are embedded in a cha
attractor. In that context delayed feedback control meth
that are easy to apply in real experimental situations@1,2#
have been rediscovered@3#. Meanwhile several features o
such control schemes have been understood even an
cally. In particular, torsion of neighbouring trajectories
important for the scheme to work at all@4,5#, the limitations
caused by the length of the period and the size of the Floq
exponents can be relaxed by including integer multiple
lays @6,7#, and the appropriate delay time can be determin
from properties of the control signal@8–10# if the periods are
not knowna priori ~cf. also@11# for recent reviews!. In ac-
tual experimental realizations of delayed feedback meth
the control force is generated electronically. Recent exp
ments on electronic circuits and numerical simulations h
demonstrated that the additional time lag of these dev
may strongly limit the success of the control scheme@12#.
From the general point of view of control theory such
observation is not quite new and well known by engine
for several decades within the context of stabilizing tim
independent states~cf., e.g., @13# where the influence o
physiological delay on the balancing of a stick by a human
studied!. Here we emphasize that the discussion of such c
trol loop latencies is of particular importance since delay
feedback methods have been designed for control in fast
perimental systems. Latency has turned out to be one of
decisive limitations for successful control. In spite of
practical importance a systematic investigation of this pr
lem has been missing so far. Since latency is inherent in
fast experimental system, it is essential to have estimate
its maximal allowed value and its relation to the Floqu
exponent of the uncontrolled orbit. By covering these op
questions we consider our investigation to be of great imp
tance for all practical applications of time-delayed feedba
control.
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Theoretical approach. Following the idea of@4# we con-
sider a general dynamical system. Letx(t) denote the inter-
nal degrees of freedom and suppose that a scalar si
g@x(t)# is accessible to measurements. From the latter a c
trol forceg@x(t2d)#2g@x(t2d2t)# is generated, whered
denotes the control loop latency. The equation of mot
which fits within this setup reads

ẋ5F„x~ t !,K$g@x~ t2d!#2g@x~ t2d2t!#%…. ~1!

Here the control amplitudeK determines the strength of th
feedback. Although we presuppose that the control am
tude acts as a multiplication factor, our considerations can
extended easily to include much more general dependen
without any essential modification. We do not specify t
analytic dependence on the control force in order to keep
approach as general as possible. The system without con
K50, should admit an unstable periodic orbitj(t)5j(t
1t) that we intend to stabilize. First of all this orbit is no
modified by the control force, since the delay has been fi
according to the period. The influence of the control lo
latency on the control scheme is investigated by means
linear stability analysis. If we take the Floquet theory in
account@14#, the deviations from the orbit obeyx(t)2j(t)
.exp@(L1iV)t#U(t), where Eq.~1! yields for the dominant
exponent and the eigenvector

~L1 iV!U~ t !1U̇~ t !

5D1F„j~ t !,0…U~ t !1d2F„j~ t !,0…

3$Dg@j~ t !#U~ t2d!%k,

U~ t !5U~ t1t!. ~2!

Here the abbreviation

kªK exp@2~L1 iV!d#$12exp@2~L1 iV!t#% ~3!

has been introduced.Dg denotes the gradient ofg@x#, D1F
and d2F the derivative with respect to the first vector typ
and the second scalar argument, respectively. The real paL
and the imaginary partV, which of course depend on th
2826 ©1999 The American Physical Society
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PRE 59 2827INFLUENCE OF CONTROL LOOP LATENCY ON TIME- . . .
control amplitudeK, determine the stability as well as th
torsion of the orbit. The corresponding values without co
trol, K50, are denoted by small lettersl.0 andv for con-
venience.

Equation ~2! determines the properties of the contr
scheme. The right-hand side depends on the exponent
the control amplitude through the single parameter~3! only.
Let us for the moment consider the latter value to be giv
Then, the Floquet exponent of the operator on the right-h
side of Eq.~2! depends of course onk andd, and we denote
this quantity byGd@k#. Equation~2! tells us that the expo
nent L1 iV that we are looking for coincides withGd@k#,
i.e., it obeys the constraint

L1 iV5Gd@K exp@2~L1 iV!d#$12exp@2~L1 iV!t#%#.
~4!

By presuppositionGd@0#5l1 iv holds, since Eq.~2! re-
duces to the uncontrolled dynamics in the casek50. Em-
ploying a Taylor series expansion Eq.~4! results to first order
in

L1 iV5l1 iv1x~d!K exp@2~L1 iV!d#

3$12exp@2~L1 iV!t#%1O~K2!. ~5!

Here the first Taylor coefficientx(d) can be computed from
Eq. ~2! by a usual perturbation expansion, which is w
known for time independent cases, e.g., from quantum
chanics. If we introduce the left- and right-Floquet eigenv
tors vT(t)5vT(t1t) andu(t)5u(t1t) of the uncontrolled
dynamics (k50) as

~L1 iV!u~ t !1u̇~ t !5D1F„j~ t !,0…u~ t !,
~6!

~L1 iV!vT~ t !2v̇T~ t !5vT~ t !D1F„j~ t !,0…,

then the coefficientx(d) is given by the corresponding ma
trix element of the coupling matrix

x~d!5E
0

t

$vT~ t !d2F„j~ t !,0…%

3$Dg@j~ t !#u~ t2d!% dtY E
0

t

vT~ t !u~ t !. ~7!

The complex numberx(d) is obviously periodic in the de
lay, x(d)5x(d1t).

In order to simplify the subsequent considerations
concentrate on unstable periodic orbits that flip their nei
borhood during one turn, i.e.,v5p/t. Although such a
choice may look at first glance very special, we emphas
that torsion, i.e., a nonvanishing frequency, is a neces
prerequisite for the control to work at all. Furthermore,
three-dimensional dissipative systems only orbits that ei
perform a complete flip during one turn or orbits witho
torsion can occur. Hence, our choice covers the case
simple electronic circuit systems. For our particular value
v, which of course is a structurally stable situation, we c
get rid of the complex values of our quantities. In fact, fro
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definition ~6! follows that û(t)ªexp(ipt/t)u(t) and v̂T(t)
ªexp(2ipt/t)vT(t) are real valued. With these propertie
expression~7! results in

x~d!5exp~ ipd/t!r~d!, r~d!52r~d1t!, ~8!

where r is a real quantity and the antiperiodicity follow
from the periodicity ofx. If we insert Eq.~8! into Eq. ~5!
and neglect the second order contribution we end up wit

Lt1 iDVt5lt2„2tr~d!…K exp@2~Lt1 iDVt!d/t#

3$11exp@2Lt2 iDVt#%, ~9!

where DV5V2p/t denotes the frequency deviation an
dimensionless quantities have been introduced. The de
dence of the Floquet exponentL1 iV on control amplitude
and control loop latency can now be evaluated from Eq.~9!.
The only system dependent and yet undetermined qua
r(d) just sets the scale for the control amplitude. O
should, however, keep in mind that this scaling factor va
ishes at some value 0,d,t because of the antiperiodicit
~8!. Although in such a case higher-order terms will beco
important one already recognizes a mechanism by which
efficiency of the control scheme is suppressed.

The dependence of the exponent on the rescaled co
amplitude for different values of the control loop latency
summarized in Fig. 1. On increasing the control amplitu
the exponentL decreases and eventually changes its sign
(2tr)Kmin5lt/2. Hence the orbit becomes stable in a fl
bifurcation. On further increase of (2tr)K two exponents
collide giving rise to a nonvanishing frequency deviatio
Beyond that value the real part increases again and ma
nally change sign at a control amplitudeKmax, so that the
orbit loses stability via a Hopf bifurcation. As a consequen
a finite interval of control amplitudes is obtained, where su
cessful control is possible. For increasing control loop

FIG. 1. Real part of the Floquet exponent and frequency de
tion in dependence on the rescaled control amplitude, obtained f
the analytical expression~9! for lt51 and different values of
d: 0, 0.2t, 0.5t, and t ~decreasing line thickness correspon
to increasing values ofd). The broken line indicates the corre
sponding second real Floquet multiplier.



ve
e.

e
ylo
oo
m
ne
co
ic
te

d
rb

d
-

io
fo

e

ai
th

ne
p

a-
a
ll

on
on

e

a
he
t
-
er
h
fi
it

co

o

t a
fac-
ur
e es-

a-
re-
ia-

ed
h
s

h a
al
he

as
l

via-
oda

s of

ng
ine

2828 PRE 59JUST, RECKWERTH, REIBOLD, AND BENNER
tency the frequency splitting point shifts towards positi
values of Lt so that the control interval shrinks in siz
Beyond a critical value

dc5t~12lt/2!/~lt! ~10!

the frequency splitting occurs for positive values ofLt so
that stabilization is no longer achieved.

Numerical analysis. Within our theoretical approach w
have adopted a single approximation, i.e., a first-order Ta
series truncation, to estimate the influence of the control l
latency. Although one cannot expect that such an approxi
tion always yields quantitatively correct predictions, o
may ask whether the qualitative features are reproduced
rectly. To address this question we resort to a numer
analysis of the driven and damped Toda oscillator subjec
to delayed feedback control,

ẋ15x2 ,
~11!

ẋ252mx22a@exp~x1!21#1A sin~2pt !

2K$x2~ t2d!2x2~ t2d2t!%.

The parameters of the oscillator are set to the valuesm
50.8, a525, andA5105 to ensure a chaotic uncontrolle
dynamics, and we focus on the unstable period-one o
with Floquet exponentl51.391 . . . andv5p. Within the
notation of the preceding paragraph the control force is
rived from the scalar signalg@x#5x2 and the delay is ad
justed to the period,t51.

In order to check the accuracy of our previous expans
we focus on a numerical analysis of the stability problem
this unstable orbit@cf. Eq. ~2!#. Although the reduction to an
ordinary Floquet problem, which is very fruitful in the cas
without control loop latency~cf. @15#! does not apply, the
eigenvalue with largest real part can be found by a pl
integration of the linearized equation. The dependence of
Floquet exponent on the control amplitude is summarized
Fig. 2 for different values of the control loop latency. O
observes essentially the same features that have been
dicted theoretically. In particular, the flip and Hopf bifurc
tions giving rise to the finite control interval seem to be
quite general feature of the control method. One typica
observes a whole period doubling sequence belowKmin
through which the control signal becomes chaotic if the c
trol amplitude is lowered. We stress that the size of the c
trol interval shrinks on increasingd.

Furthermore, we compare the numerical ‘‘exact’’ Floqu
exponent with the analytical expression~9!. The latter has
been obtained formally as a first-order Taylor series exp
sion in the control amplitude. However, if one recalls t
derivation there is no need to perform the expansion aK
50. One can expand Eq.~4! at any real value of the argu
ment. The price one has to pay is that the term of order z
lt, is not given any longer by the Lyapunov exponent of t
uncontrolled orbit, but may be viewed as an additional
parameter. Here we adopt such a point of view which is qu
reasonable since in applications the exponent of the un
trolled orbit is often unknown. We fixd/t to its known nu-
merical value but adjustlt and@2tr(d)# in Eq. ~9! in such
a way that the frequency splitting point is properly repr
r
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duced. If one recalls that the analytical expression is jus
first-order series expansion, the coincidence is quite satis
tory even from a quantitative point of view. Altogether, o
analysis shows that the theoretical approach captures th
sential features of the control loop latency.

Experiments. To illustrate the consequences of our an
lytical results for experiments we have performed measu
ments on an autonomous nonlinear electronic circuit. A d
gram of the experimental setup is displayed in Fig. 3.

The plain nonlinear electronic circuit has been describ
in detail previously@10#. We adjusted its parameters in suc
a way that without control a Ro¨ssler type attractor appear
that contains an unstable periodic orbit with periodt
51.656 ms and Floquet frequencyv5p/t. The control de-
vice consisted of a cascade of electronic delay lines wit
limiting frequency of about 3 MHz and several operation
amplifiers acting as preamplifier, subtractor, or inverter. T
device allowed to apply a control force of the formF(t)5
2K@U(t)2U(t2t)# with t range 10 ns–21ms. Accord-
ing to the period of the unstable orbit, the control delay w
adjusted tot51.656 ms. To investigate the effect of contro

FIG. 2. Real part of the Floquet exponent and frequency de
tion in dependence on the control amplitude, obtained for the T
oscillator ~11! and different values ofd: 0, 0.15, and 0.3~solid
lines, decreasing line thickness corresponds to increasing value
d). The dotted lines indicate the corresponding analytical result~9!
with the fit parameters @lt;2tr#5@1.02;0.24# (d50),
@0.94;0.36# (d50.15), and@1.66;0.78# (d50.3).

FIG. 3. Schematic view of the experimental setup includi
nonlinear electronic circuit, control device, and additional delay l
for adjustable control loop latency.
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loop latency we included a delay line between control dev
and feedback input. The control loop without additional d
lay line had a latency ofd0537 ns. Therefore, by means o
the additional delay line we could investigate latenciesd
5d01dDL , wheredDL could be set in steps of 1 ns.

To determine the region of successful control, i.e.,
region where the control signal becomes as small as the e
tronic noise in the system, we swept the control amplitudK
at fixed d in order to obtain the control interva
@Kmin(d),Kmax(d)#. The results for differentd values are
shown in Fig. 4. As can be clearly seen, the region of s
cessful control strongly depends on the latency leading to
loss of control ford/t'11%. In order to compare these da
with our analytical result~9! we choose the most simpl
form for the scaling factor, @2tr(d)#5A sin(pd/t)
1Bcos(pd/t), which is compatible with the antiperiodicit
~8!. A least square fit of the value ofKmin(d) leads to the
valuesA521.4 andB53.3. In addition, the fit yields the
Lyapunov exponent of the uncontrolled orbitlt51.6. In

FIG. 4. Dependence of control interval on control loop laten
h, Kmin(d); s, Kmax(d). The gray-shaded region is not acce
sible in our experiments due to the intrinsic latencyd0 . The lines
are fits of the analytical result to the experimental data.
e

e
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e
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e
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e

view of our previous discussion one should, however, ke
in mind that this value may differ from the exact one. A
cording to expression~10! one obtains a critical valuedc /t
512.5%. Altogether, the quantitative coincidence of the e
perimental data with our analytical results is striking. Fu
thermore the shape of the control region agrees with prev
experimental and numerical findings@12#.

Conclusion. We have clarified the mechanism throug
which control loop latency affects the efficiency of delay
feedback control methods. The frequency splitting po
which already limits the control interval for ordinary delaye
feedback control is shifted in a way that the control interv
shrinks in size. In our cases a latency of 10–20 % of
period was sufficient to destroy the control at all. The o
tained features can already be guessed from a superficia
spection of the eigenvalue equation~4!, since the exponentia
originating from the latency reduces the effective cont
amplitude. Although our analysis was limited to flip orbi
for simplicity, we think that the main features survive in th
general case.

The analytical investigation of the eigenvalue equat
was performed by employing a simple first-order Taylor s
ries truncation. One may try to improve such an approxim
tion by, e.g., taking the largeK asymptotic correctly into
account. Nevertheless, as demonstrated by the experim
results, even the lowest order captures essential feature
the influence of the control loop latency on the control int
val. All the details of the system under consideration ha
been condensed to a single scalarr(d), which rescales the
control amplitude only. Finally we stress that, within o
perturbative treatment, the maximal allowed latency h
been related solely to properties of the unstable periodic
bit, namely, the period and the Lyapunov exponent.

This project of SFB 185 ‘‘Nichtlineare Dynamik’’ was
partially financed by special funds of the Deutsche Fo
chungsgemeinschaft. We are indebted to F. Laeri and
Müller for the use of their delayed feedback control devic
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