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Influence of control loop latency on time-delayed feedback control
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As realized recently, the success of delayed feedback control methods may be significantly restricted by
control loop latency, i.e., by an additional delay which acts on the control force. We show within a linear
stability analysis that such a limitation is caused by the shift of frequency splitting points. Our analytical results
are in good quantitative agreement with numerical “exact” calculations of the Toda oscillator and with data
from an electronic circuit experimerfiS1063-651X%99)00203-2

PACS numbgs): 05.45.Gg, 02.30.Ks, 07.50.Ek

The topic of control has become popular among physicists Theoretical approachFollowing the idea of4] we con-
in the past few years, in particular, in connection with thesider a general dynamical system. xét) denote the inter-
stabilization of periodic orbits that are embedded in a chaoti®al degrees of freedom and suppose that a scalar signal
attractor. In that context delayed feedback control method§[X(t)] is accessible to measurements. From the latter a con-
that are easy to apply in real experimental situatifihg]  trol force g[x(t— 8)]—g[x(t— 6—7)] is generated, wheré
have been rediscoverd@]. Meanwhile several features of denotes the control loop latency. The equation of motion
such control schemes have been understood even analyfhich fits within this setup reads
cally. In particular, torsion of neighbouring trajectories is :
important for the scheme to work at &4,5], the limitations x=F(x(t),K{g[x(t— &) ]—g[x(t——7)1}). (1)
caused by the length of the period and the size of the Floquet

exponents can be relaxed by including integer multiple deHere the control amplitud& determines the strength of the

lays[6,7], and the appropriate delay time can be determine(ﬁeedbaCk' Although WE presuppose that th_e cor}trol ampli-
from properties of the control signi8—10) if the periods are tude acts as a multiplication factor, our considerations can be

not knowna priori (cf. also[11] for recent reviews In ac- e>_<tended easily to i_nclude _rnuch more general depen_dencies
tual experimental realizations of delayed feedback method¥ithout any essential modification. We do not specify the
the control force is generated electronically. Recent experidn@lytic dependence on the control force in order to keep the
ments on electronic circuits and numerical simulations hav@PProach as general as possible. The system without control,
demonstrated that the additional time lag of these device§ =0: should admit an unstable periodic orkit) = &(t

may strongly limit the success of the control scheliba]. +17) _that we intend to stab|I|ze_. First of all this orbit is n.ot
From the general point of view of control theory such anmodlflgd by the contrpl force, since the delay has been fixed
observation is not quite new and well known by engineerdccording to the period. The influence of the control loop
for several decades within the context of stabilizing time!@t€ncy on the control scheme is investigated by means of a
independent state&f., e.g.,[13] where the influence of linear stability analy_f,ls_. If we take the Eloquet theory into
physiological delay on the balancing of a stick by a human i¢ccount{14], the deviations from the orbit obey(t) — £(t)
studied. Here we emphasize that the discussion of such con=&XH(A+iQ)tJU(t), where Eq.(1) yields for the dominant

trol loop latencies is of particular importance since delayed®*Ponent and the eigenvector

feedback methods have been designed for control in fast ex- .

perimental systems. Latency has turned out to be one of theh T12)U(1)+U(t)

decisive limitations for successful control. In spite of its

practical importance a systematic investigation of this prob- =D F(&1),0U(t) +daF(&(1),0)

lem has been missing so far. Since latency is inherent in any X {Dg[&1t)]U(t— 8)}k

fast experimental system, it is essential to have estimates for ’

its maximal allowed value and its relation to the Floquet U(t)=U(t+ 7). @)

exponent of the uncontrolled orbit. By covering these open
guestions we consider our investigation to be of great imporHere the abbreviation
tance for all practical applications of time-delayed feedback

control. ki=Kexg —(A+iQ)s|{1l—exd —(A+iQ)7]} (3)
has been introducedg denotes the gradient of x], D,F
*Electronic address: wolfram@mpipks-dresden.mpg.de andd,F the derivative with respect to the first vector type
"Electronic address: reibold@exp1.fkp.physik.tu-darmstadt.de and the second scalar argument, respectively. The realpart
*Electronic address: benner@hrzpub.tu-darmstadt.de and the imaginary par€, which of course depend on the
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control amplitudeK, determine the stability as well as the 1 ]
torsion of the orbit. The corresponding values without con- 05 v
trol, K=0, are denoted by small lettexs>0 andw for con- AT o ;

venience. \C:::___’.—————"
Equation (2) determines the properties of the control o5 7

scheme. The right-hand side depends on the exponent and b S . - L
the control amplitude through the single paramégronly. 0 03 06 0.9 1.2 15
Let us for the moment consider the latter value to be given. —tpK

Then, the Floquet exponent of the operator on the right-hand : : . : :
side of Eq.(2) depends of course anand S, and we denote w2 E
this quantity byl" 4 k]. Equation(2) tells us that the expo- %
nent A +i(Q) that we are looking for coincides with 4 ], AQt o

i.e., it obeys the constraint
w2 b 3

A+iQ=TJKexd —(A+iQ)s{1—exd —(A+iQ)7]}]. 0 03 06 oo 12 15
4 -1pK
By presuppositionl' s/ 0]=\+iw holds, since Eq(2) re- FIG. 1. Real part of the Floguet exponent and frequency devia-

duces to the uncontrolled dynamics in the case0. Em-  tion in dependence on the rescaled control amplitude, obtained from

ploying a Taylor series expansion H¢) results to first order the analytical expressiof9) for A7=1 and different values of

in 8. 0, 0.2r, 0.5r, and 7 (decreasing line thickness corresponds
to increasing values 0b). The broken line indicates the corre-

A+iQ=A+iw+x(SKexd—(A+iQ)5] sponding second real Floquet multiplier.
_ - i 2 ~ ~

XL=exd = (AFIQ)TRHOKD). (O yefinition (6) follows that (t) :=exp(at/au(t) and o7(t)
==exp(—int/nv'(t) are real valued. With these properties

Here the first Taylor coefficieng(d) can be computed from expression(7) results in

Eq. (2) by a usual perturbation expansion, which is well
known for time independent cases, e.g., from quantum me-
chanics. If we introduce the left- and right-Floquet eigenvec-
torsv"(t)=v"(t+ 7) andu(t)=u(t+ 7) of the uncontrolled
dynamics =0) as

x(o)=explimédl7)p(5), p(&)=—p(6+7), (8

where p is a real quantity and the antiperiodicity follows
from the periodicity ofy. If we insert Eq.(8) into Eqg. (5)

) . and neglect the second order contribution we end up with
(A+iQ)u(t)+u(t)=D,F(&1),0u(t),

(6) AT+HiIAQr=N7—(—1p(8))K exd — (A 7+iAQ7) 6/ 7]

(A+iQ)o () —ovT(t)=vT(1)D,F(&(1),0), {1+ ext] — Ar—iAQ ]} ©

then the coefficieny () is given by the corresponding ma-

trix element of the coupling matrix where AQ=Q - 7/7 denotes the frequency deviation and

dimensionless quantities have been introduced. The depen-
i dence of the Floquet exponenat+i{) on control amplitude
X((;)ZJ {oT(t)d,F(&(t),0)} and control loop latency can now be evaluated from @&j.
0 The only system dependent and yet undetermined quantity
, p(8) just sets the scale for the control amplitude. One
X {Dg[&(t)Ju(t— &)} dt/ f vT(Hu(t). (7)  should, however, keep in mind that this scaling factor van-
0 ishes at some value<06< 7 because of the antiperiodicity
(8). Although in such a case higher-order terms will become
The complex numbey/(d) is obviously periodic in the de- important one already recognizes a mechanism by which the
lay, x(8)=x(6+ 7). efficiency of the control scheme is suppressed.

In order to simplify the subsequent considerations we The dependence of the exponent on the rescaled control
concentrate on unstable periodic orbits that flip their neighamplitude for different values of the control loop latency is
borhood during one turn, i.e@w=mx/7. Although such a summarized in Fig. 1. On increasing the control amplitude
choice may look at first glance very special, we emphasizéhe exponeni\ decreases and eventually changes its sign at
that torsion, i.e., a nonvanishing frequency, is a necessarf— 7p)Kin=\7/2. Hence the orbit becomes stable in a flip
prerequisite for the control to work at all. Furthermore, in bifurcation. On further increase of{(7p)K two exponents
three-dimensional dissipative systems only orbits that eithecollide giving rise to a nonvanishing frequency deviation.
perform a complete flip during one turn or orbits without Beyond that value the real part increases again and may fi-
torsion can occur. Hence, our choice covers the case afally change sign at a control amplitu#tg, .4, SO that the
simple electronic circuit systems. For our particular value oforbit loses stability via a Hopf bifurcation. As a consequence
w, which of course is a structurally stable situation, we cama finite interval of control amplitudes is obtained, where suc-
get rid of the complex values of our quantities. In fact, fromcessful control is possible. For increasing control loop la-
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tency the frequency splitting point shifts towards positive
values of A7 so that the control interval shrinks in size.
Beyond a critical value

Se=1(1=N112)/(\ 7) (10)

the frequency splitting occurs for positive values /ot so
that stabilization is no longer achieved.

Numerical analysisWithin our theoretical approach we
have adopted a single approximation, i.e., a first-order Taylor
series truncation, to estimate the influence of the control loop
latency. Although one cannot expect that such an approxima-
tion always yields quantitatively correct predictions, one
may ask whether the qualitative features are reproduced cor-
rectly. To address this question we resort to a numerical
analysis of the driven and damped Toda oscillator subjected
to delayed feedback control,

FIG. 2. Real part of the Floquet exponent and frequency devia-
tion in dependence on the control amplitude, obtained for the Toda
. ) 11 oscillator (11) and different values ob: 0, 0.15, and 0.3solid
Xo= — uXp— a[eXp(Xy) — 1]+ Asin(2m7t) lines, decreasing line thickness corresponds to increasing values of
8). The dotted lines indicate the corresponding analytical réSult
~Kix(t=8)=xp(t= -7} with the fit parameters [\7;—7p]=[1.02;0.24 (5=0),
[0.94;0.36 (6=0.15), and 1.66;0.78 (6=0.3).

X1:X2,

The parameters of the oscillator are set to the values
=0.8, =25, andA=105 to ensure a chaotic uncontrolled
dynamiCS, and we focus on the unstable period-one orbﬂiuced. If one recalls that the analytical expression is jUSt a
with Floquet exponent =1.39L ... andw= 7. Within the first-order series expansion, the coincidence is quite satisfac-
notation of the preceding paragraph the control force is detory even from a quantitative point of view. Altogether, our
rived from the scalar signal[x]=x, and the delay is ad- analysis shows that the theoretical approach captures the es-
justed to the periodr=1. sential features of the control loop latency.

In order to check the accuracy of our previous expansion .ExperimentsTo iIIusFrate the consequences of our ana-
we focus on a numerical analysis of the stability problem forlytical results for experiments we have performed measure-
this unstable orbifcf. Eq. (2)]. Although the reduction to an Ments on an autonomous nonlinear electronic circuit. A dia-
ordinary Floquet problem, which is very fruitful in the case 9ram of the experimental setup is displayed in Fig. 3.
without control loop latency(cf. [15]) does not apply, the The.plain ponlinear electronic circ.uit has been dgscribed
eigenvalue with largest real part can be found by a plairin detail previously{10]. We adjusted its parameters in such
integration of the linearized equation. The dependence of th@ Way that without control a Rssler type attractor appears
Floquet exponent on the control amplitude is summarized ifhat contains an unstable periodic orbit with peried
Fig. 2 for different values of the control loop latency. One =1.656 us and Floquet frequenay= /7. The control de-
observes essentially the same features that have been piéce consisted of a cascade of electronic delay lines with a
dicted theoretically. In particular, the flip and Hopf bifurca- limiting frequency of about 3 MHz and several operational
tions giving rise to the finite control interval seem to be aamplifiers acting as preamplifier, subtractor, or inverter. The
quite general feature of the control method. One typicallydevice allowed to apply a control force of the forfft) =
observes a whole period doubling sequence beloyy, —K[U(t)—U(t—7)] with 7 range 10 ns-21us. Accord-
through which the control signal becomes chaotic if the coning to the period of the unstable orbit, the control delay was
trol amplitude is lowered. We stress that the size of the conadjusted tor=1.656 us. To investigate the effect of control
trol interval shrinks on increasing.

Furthermore, we compare the numerical “exact” Floquet
exponent with the analytical expressi¢®. The latter has
been obtained formally as a first-order Taylor series expan-
sion in the control amplitude. However, if one recalls the
derivation there is no need to perform the expansioiK at
=0. One can expand E@4) at any real value of the argu-
ment. The price one has to pay is that the term of order zero,
A\, is not given any longer by the Lyapunov exponent of the
uncontrolled orbit, but may be viewed as an additional fit
parameter. Here we adopt such a point of view which is quite - ----=---- m----

. . . . Control device
reasonable since in applications the exponent of the uncon-
trolled orbit is often unknown. We fix¥/  to its known nu- FIG. 3. Schematic view of the experimental setup including
merical value but adjust~ and[ — 7p(8)] in Eg.(9) in such  nonlinear electronic circuit, control device, and additional delay line
a way that the frequency splitting point is properly repro-for adjustable control loop latency.

Nonlinear
electronic circuit
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W T view of our previous discussion one should, however, keep
o in mind that this value may differ from the exact one. Ac-
04 | 1 cording to expressiofiL0) one obtains a critical valué,/r
o TtoLg =12.5%. Altogether, the quantitative coincidence of the ex-
K TS0 g perimental data with our analytical results is striking. Fur-

03 = 1 thermore the shape of the control region agrees with previous
GIE experimental and numerical finding$2].

Conclusion We have clarified the mechanism through
02 | . which control loop latency affects the efficiency of delayed

0 50 100 150 200 fee_dback cont(ol_ methods. The frequency §p|itting point

8 [ns] which already I|m|'ts thg control interval for ordinary dglayed

feedback control is shifted in a way that the control interval

FIG. 4. Dependence of control interval on control loop Iatency.Sh”_nks In S'Ze-_“_“ our cases a latency of 10-20% of the
O, Kpin(8): O, Knag ). The gray-shaded region is not acces- pe_rlod was sufficient to destroy the control at all. Thg _ob_—
sible in our experiments due to the intrinsic latengy. The lines talneq features can already be guessgd from a SUpemC.'al In-
are fits of the analytical result to the experimental data. SF’_e?“OF‘ of the eigenvalue equatieh, since the exponentlal

originating from the latency reduces the effective control
amplitude. Although our analysis was limited to flip orbits
loop latency we included a delay line between control devicdor simplicity, we think that the main features survive in the
and feedback input. The control loop without additional de-general case.
lay line had a latency 06,=37 ns. Therefore, by means of  The analytical investigation of the eigenvalue equation
the additional delay line we could investigate latencies Wwas performed by employing a simple first-order Taylor se-
= 8o+ SpL, Wheredp, could be set in steps of 1 ns. ries truncation. One may try to improve such an approxima-

To determine the region of successful control, i.e., thelion by, e.g., taking the larg& asymptotic correctly into
region where the control signal becomes as small as the ele@ccount. Nevertheless, as demonstrated by the experimental
tronic noise in the system, we swept the control amplitdde "€Sults, even the lowest order captures essential features of
at fixed 8 in order to obtain the control interval the influence of t_he control loop latency on the_ cont_rol inter-
[Kin(8),Kmad(8)]. The results for differents values are val. All the details of th.e system under c;on3|derat|on have
shown in Fig. 4. As can be clearly seen, the region of sucpeen condensed to a single scalp), which rescales the

cessful control strongly depends on the latency leading to thgontrol a_mplltude only. Finally we stress that, within our
loss of control foré/ 7=11%. In order to compare these data perturbative treatment, the maximal allowed latency has

with our analytical result(9) we choose the most simple Efien relaltedt;olely ltodprogetrﬁiei of the unstable p(iriodic or-
form for the scaling factor, [—rp(8)]=Asin(@ss) ' Namely, the period and the Lyapunov exponent.

+Bcos@rd/7), which is compatible with the antiperiodicity This project of SFB 185 “Nichtlineare Dynamik” was

(8). A least square fit of the value &f,,(5) leads to the partially financed by special funds of the Deutsche Fors-
valuesA=—1.4 andB=3.3. In addition, the fit yields the chungsgemeinschaft. We are indebted to F. Laeri and M.
Lyapunov exponent of the uncontrolled orbitr=1.6. In  Muller for the use of their delayed feedback control device.
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